Newer
Older
use std::fmt::{write, Debug, Formatter};
use crate::utils::IntoTile;
/// The size of the grid that can be matched; equal to the length of one side of the square grid
const RULE_MAGNITUDE: usize = 7;
/// Number of array entries required to store all the data for a grid
const TILE_GRID_SIZE: usize = RULE_MAGNITUDE.pow(2);
/// The index of the center tile in the grid
const GRID_CENTER: usize = (TILE_GRID_SIZE - 1) / 2;
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
pub struct NotSquareError;
impl std::fmt::Display for NotSquareError {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
write!(f, "Input is not a square grid")
}
}
impl std::error::Error for NotSquareError {}
/// Represents how a single tile location should be matched when evaluating a rule
#[derive(Ord, PartialOrd, Eq, PartialEq, Hash, Default, Copy, Clone)]
pub enum TileStatus {
/// This tile will always match, regardless of the input tile
#[default]
Ignore,
/// This tile will only match when there is no input tile (`None`)
Nothing,
/// This tile will always match as long as the tile exists (`Option::is_some`)
Anything,
/// This tile will match as long as the input tile exists and the input value is the same as this value
Is(i32),
/// This tile will match as long as the input tile exists and the input value is anything other than this value
IsNot(i32),
}
impl Debug for TileStatus {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
match self {
Self::Ignore => write!(f, "Any Or No Tile"),
Self::Nothing => write!(f, "No Tile"),
Self::Anything => write!(f, "Any Tile"),
Self::Is(value) => write!(f, "Must Match [{}]", value),
Self::IsNot(value) => write!(f, "Must Not Match [{}]", value),
}
}
}
impl PartialEq<Option<i32>> for TileStatus {
fn eq(&self, other: &Option<i32>) -> bool {
let matched = match self {
Self::Ignore => true,
Self::Nothing => other.is_none(),
Self::Anything => other.is_some(),
Self::Is(value) => &Some(*value) == other,
Self::IsNot(value) => &Some(*value) != other,
};
matched
}
}
impl TileStatus {
#[deprecated(since = "0.2.0", note = "Use `TileStatus::into` directly instead")]
pub fn to_ldtk_value(self) -> i64 {
self.into_tile() as i64
}
#[deprecated(since = "0.2.0", note = "Use `TileStatus::from` directly instead")]
pub fn from_ldtk_value(value: i64) -> Self {
Self::from(value)
}
}
/// Holds a grid of raw input data, as a more ideal format for interop and storage
#[repr(transparent)]
pub struct TileLayout(pub [Option<i32>; TILE_GRID_SIZE]);
impl TileLayout {
/// Create a 1x1 grid of tile data
pub fn single(value: i32) -> Self {
let mut grid = [None; TILE_GRID_SIZE];
grid[GRID_CENTER] = Some(value);
TileLayout(grid)
/// Construct a filled grid of tile data
pub fn filled(values: [i32; TILE_GRID_SIZE]) -> Self {
/// Construct a filled grid of identical tile data
TileLayout([Some(value); TILE_GRID_SIZE])
}
/// Filter the layout data so that it only contains the tiles surrounding the target tile. This
/// means that the array index of every entry before the center point will match the original data
/// array, but ever entry after the center point will have its index shifted down by 1
///
/// The main utility of this is to perform set operations on every tile _other_ than the target tile.
///
/// ## Examples
///
/// ```
/// # use micro_autotile::TileLayout;
/// let layout = TileLayout::single(123);
/// let has_any_surrounding_tiles = layout.surrounding()
/// .iter()
/// .any(|tile| tile.is_some());
///
/// assert_eq!(has_any_surrounding_tiles, false);
/// ```
pub fn surrounding(&self) -> [Option<i32>; 8] {
[
self.0[0], self.0[1], self.0[2], self.0[3], self.0[5], self.0[6], self.0[7], self.0[8],
]
}
}
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
impl Debug for TileLayout {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
if f.alternate() {
let lines = as_lines(&self.0);
let mut max_width = 1;
for line in lines.iter() {
for value in line.iter() {
if let Some(value) = value {
max_width = max_width.max(value.to_string().len());
}
}
}
for line in lines {
for value in line {
if let Some(value) = value {
write!(f, "{:^max_width$?} ", value)?;
} else {
write!(f, "{:^max_width$} ", "#")?;
}
}
write!(f, "\n")?;
}
write!(f, "\n")
} else {
writeln!(f, "{:?}", self.0)
}
}
}
impl <T> TryFrom<&[T]> for TileLayout where T: IntoTile + Copy + Default + Debug {
type Error = NotSquareError;
fn try_from(value: &[T]) -> Result<Self, Self::Error> {
if is_square(value.len()) {
let formatted = transpose(value);
Ok(Self(formatted.map(|t| if t.into_tile() == 0 { None } else { Some(t.into_tile()) })))
} else {
Err(NotSquareError)
}
}
}
/// Holds parsed tile rules that are used to evaluate a layout
#[derive(Clone, Copy)]
pub struct TileMatcher(pub [TileStatus; TILE_GRID_SIZE]);
impl Debug for TileMatcher {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
if f.alternate() {
let lines = as_lines(&self.0);
writeln!(f, "Tile Matcher")?;
for line in lines {
for value in line {
write!(f, "{:?} ", value)?;
}
write!(f, "\n")?;
}
writeln!(f, "\n")
} else {
write!(f, "TileMatcher({:?})", self.0)
}
}
}
impl Default for TileMatcher {
fn default() -> Self {
TileMatcher([TileStatus::default(); TILE_GRID_SIZE])
}
}
pub const fn single(value: TileStatus) -> Self {
let mut rules = [TileStatus::Ignore; TILE_GRID_SIZE];
rules[GRID_CENTER] = value;
TileMatcher(rules)
/// Create a 1x1 matcher, with any rule for the target tile
pub const fn single_match(value: i32) -> Self {
Self::single(TileStatus::Is(value))
}
/// Check if the given input layout of tile data conforms to this matcher
pub fn matches(&self, layout: &TileLayout) -> bool {
self.0
.iter()
.zip(layout.0.iter())
.all(|(status, reality)| *status == *reality)
}
/// Load data from an LDTK JSON file. Supports arbitrary sized matchers for any square grid.
/// Other sizes of matcher will result in `None`
pub fn from_ldtk_array(value: Vec<i64>) -> Option<Self> {
if is_square(value.len()) {
Some(Self(transpose(value.as_slice()).map(TileStatus::from)))
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
}
impl <T> TryFrom<&[T]> for TileMatcher where T: IntoTile + Copy + Default {
type Error = NotSquareError;
fn try_from(value: &[T]) -> Result<Self, Self::Error> {
if is_square(value.len()) {
let formatted = transpose(value);
Ok(Self(formatted.map(TileStatus::from)))
} else {
Err(NotSquareError)
}
}
}
impl TryFrom<&[TileStatus]> for TileMatcher {
type Error = NotSquareError;
fn try_from(value: &[TileStatus]) -> Result<Self, Self::Error> {
if is_square(value.len()) {
Ok(Self(transpose(value)))
} else {
Err(NotSquareError)
}
}
}
/// Convert a square grid of arbitrary size into one of the expected autotiler grid size (7x7). Odd
/// numbered grids will be centered in the output, while even numbered grids will be offset by 1 to
/// the top and left of the output.
///
/// This method will panic if the provided list of values is not a square grid
///
/// ## Example
///
/// For a 2x2 input grid:
///
/// ```text
/// 2 2
/// 2 2
/// ```
///
/// Applying this function will result in the following output grid:
///
/// ```text
/// 1 1 1 1 1 1 1
/// 1 1 1 1 1 1 1
/// 1 1 2 2 1 1 1
/// 1 1 2 2 1 1 1
/// 1 1 1 1 1 1 1
/// 1 1 1 1 1 1 1
/// 1 1 1 1 1 1 1
/// ```
///
/// ## Example
///
/// For a 3x3 input grid:
///
/// ```text
/// 3 3 3
/// 3 3 3
/// 3 3 3
/// ```
///
/// Applying this function will result in the following output grid:
///
/// ```text
/// 1 1 1 1 1 1 1
/// 1 1 1 1 1 1 1
/// 1 1 3 3 3 1 1
/// 1 1 3 3 3 1 1
/// 1 1 3 3 3 1 1
/// 1 1 1 1 1 1 1
/// 1 1 1 1 1 1 1
/// ```
///
fn transpose<Value>(input: &[Value]) -> [Value; TILE_GRID_SIZE] where Value: Default + Copy {
if input.len() == TILE_GRID_SIZE {
match input.try_into() {
Ok(output) => return output,
Err(_) => {
// This should never happen since we've already checked the length - just in case,
// we want it to fall through and run the rest of the algorithm
}
}
}
if !is_square(input.len()) {
// Length isn't square == it does not represent a square grid
panic!("Input must be a square grid");
}
let input_size = (input.len() as f64).sqrt() as usize;
let mut output = [Value::default(); TILE_GRID_SIZE];
let output_start = if input_size < RULE_MAGNITUDE {
// Even padding requires our initial x coord to be half the size difference from the edge.
// Even sized squares will be offset to by one to the left and top, which is preferable to
// rejecting even squares altogether
(RULE_MAGNITUDE - input_size) / 2
} else {
0
};
let input_start = if input_size > RULE_MAGNITUDE {
(input_size - RULE_MAGNITUDE) / 2
} else {
0
};
for x in 0..input_size {
for y in 0..input_size {
let adjusted_input_x = x + input_start;
let adjusted_input_y = y + input_start;
let input_idx = adjusted_input_y * input_size + adjusted_input_x;
let adjusted_output_x = x + output_start;
let adjusted_output_y = y + output_start;
let output_idx = adjusted_output_y * RULE_MAGNITUDE + adjusted_output_x;
output[output_idx] = input[input_idx];
}
}
output
}
fn is_square(n: usize) -> bool {
let sqrt_n = (n as f64).sqrt() as usize;
n == sqrt_n.pow(2)
}
fn as_lines<T>(input: &[T]) -> Vec<&[T]> {
input.chunks(RULE_MAGNITUDE).collect()
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn it_transposes_odd_grids() {
let input = [2, 2, 2, 2, 2, 2, 2, 2, 2];
let expected = [
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 2, 2, 2, 0, 0,
0, 0, 2, 2, 2, 0, 0,
0, 0, 2, 2, 2, 0, 0,
0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0,
];
assert_eq!(expected, transpose(&input));
}