Newer
Older
use bevy::prelude::*;
use std::time::Duration;
use crate::{EaseMethod, Lens, TweeningDirection, TweeningType};
/// Playback state of a [`Tweenable`].
///
/// This is returned by [`Tweenable::tick()`] to allow the caller to execute some logic based on the
/// updated state of the tweenable, like advanding a sequence to its next child tweenable.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub enum TweenState {
/// The tweenable is still active, and did not reach its end state yet.
Active,
/// Animation reached its end state. The tweenable is idling at its latest time. This can only happen
/// for [`TweeningType::Once`], since other types loop indefinitely.
Completed,
}
///
/// This event is raised when a tween completed. For non-looping tweens, this is raised once at the
/// end of the animation. For looping animations, this is raised once per iteration. In case the animation
/// direction changes ([`TweeningType::PingPong`]), an iteration corresponds to a single progress from
/// one endpoint to the other, whatever the direction. Therefore a complete cycle start -> end -> start
/// counts as 2 iterations and raises 2 events (one when reaching the end, one when reaching back the start).
///
/// # Note
///
/// The semantic is slightly different from [`TweenState::Completed`], which indicates that the tweenable
/// has finished ticking and do not need to be updated anymore, a state which is never reached for looping
/// animation. Here the [`TweenCompleted`] event instead marks the end of a single loop iteration.
#[derive(Copy, Clone)]
pub struct TweenCompleted {
/// The [`Entity`] the tween which completed and its animator are attached to.
pub entity: Entity,
/// An opaque value set by the user when activating event raising, used to identify the particular
/// tween which raised this event. The value is passed unmodified from a call to [`with_completed_event()`]
/// or [`set_completed_event()`].
///
/// [`with_completed_event()`]: Tween::with_completed_event
/// [`set_completed_event()`]: Tween::set_completed_event
pub user_data: u64,
/// An animatable entity, either a single [`Tween`] or a collection of them.
pub trait Tweenable<T>: Send + Sync {
/// Get the total duration of the animation.
///
/// For [`TweeningType::PingPong`], this is the duration of a single way, either from start
/// to end or back from end to start. The total loop duration start -> end -> start in this
/// case is the double of the returned value.
/// Return `true` if the animation is looping.
fn is_looping(&self) -> bool;
/// Set the current animation playback progress.
///
/// See [`progress()`] for details on the meaning.
///
/// [`progress()`]: Tweenable::progress
fn set_progress(&mut self, progress: f32);
/// Get the current progress in \[0:1\] (non-looping) or \[0:1\[ (looping) of the animation.
///
/// For looping animations, this reports the progress of the current iteration,
/// in the current direction:
/// - [`TweeningType::Loop`] is 0 at start and 1 at end. The exact value 1.0 is never reached,
/// since the tweenable loops over to 0.0 immediately.
/// - [`TweeningType::PingPong`] is 0 at the source endpoint and 1 and the destination one,
/// which are respectively the start/end for [`TweeningDirection::Forward`], or the end/start
/// for [`TweeningDirection::Backward`]. The exact value 1.0 is never reached, since the tweenable
/// loops over to 0.0 immediately when it changes direction at either endpoint.
/// Tick the animation, advancing it by the given delta time and mutating the given target component or asset.
///
/// This returns [`TweenState::Active`] if the tweenable didn't reach its final state yet (progress < 1.),
/// or [`TweenState::Completed`] if the tweenable completed this tick. Only non-looping tweenables return
/// a completed state, since looping ones continue forever.
///
/// Calling this method with a duration of [`Duration::ZERO`] is valid, and updates the target to the current
/// state of the tweenable without actually modifying the tweenable state. This is useful after certain operations
/// like [`rewind()`] or [`set_progress()`] whose effect is otherwise only visible on target on next frame.
/// [`rewind()`]: Tweenable::rewind
/// [`set_progress()`]: Tweenable::set_progress
fn tick(
&mut self,
delta: Duration,
target: &mut T,
entity: Entity,
event_writer: &mut EventWriter<TweenCompleted>,
) -> TweenState;
/// Get the number of times this tweenable completed.
///
/// For looping animations, this returns the number of times a single playback was completed. In the
/// case of [`TweeningType::PingPong`] this corresponds to a playback in a single direction, so tweening
/// from start to end and back to start counts as two completed times (one forward, one backward).
fn times_completed(&self) -> u32;
/// Rewind the animation to its starting state.
fn rewind(&mut self);
}
impl<T> Tweenable<T> for Box<dyn Tweenable<T> + Send + Sync + 'static> {
fn duration(&self) -> Duration {
self.as_ref().duration()
}
fn is_looping(&self) -> bool {
self.as_ref().is_looping()
}
fn set_progress(&mut self, progress: f32) {
self.as_mut().set_progress(progress);
}
fn progress(&self) -> f32 {
self.as_ref().progress()
}
fn tick(
&mut self,
delta: Duration,
target: &mut T,
entity: Entity,
event_writer: &mut EventWriter<TweenCompleted>,
) -> TweenState {
self.as_mut().tick(delta, target, entity, event_writer)
fn times_completed(&self) -> u32 {
self.as_ref().times_completed()
}
fn rewind(&mut self) {
self.as_mut().rewind()
}
}
/// Trait for boxing a [`Tweenable`] trait object.
pub trait IntoBoxDynTweenable<T> {
/// Convert the current object into a boxed [`Tweenable`].
fn into_box_dyn(this: Self) -> Box<dyn Tweenable<T> + Send + Sync + 'static>;
}
impl<T, U: Tweenable<T> + Send + Sync + 'static> IntoBoxDynTweenable<T> for U {
fn into_box_dyn(this: U) -> Box<dyn Tweenable<T> + Send + Sync + 'static> {
Box::new(this)
}
}
/// Single tweening animation instance.
pub struct Tween<T> {
ease_function: EaseMethod,
timer: Timer,
tweening_type: TweeningType,
direction: TweeningDirection,
lens: Box<dyn Lens<T> + Send + Sync + 'static>,
on_completed: Option<Box<dyn Fn(Entity, &Tween<T>) + Send + Sync + 'static>>,
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
/// Chain another [`Tweenable`] after this tween, making a [`Sequence`] with the two.
///
/// # Example
/// ```
/// # use bevy_tweening::{lens::*, *};
/// # use bevy::math::*;
/// # use std::time::Duration;
/// let tween1 = Tween::new(
/// EaseFunction::QuadraticInOut,
/// TweeningType::Once,
/// Duration::from_secs_f32(1.0),
/// TransformPositionLens {
/// start: Vec3::ZERO,
/// end: Vec3::new(3.5, 0., 0.),
/// },
/// );
/// let tween2 = Tween::new(
/// EaseFunction::QuadraticInOut,
/// TweeningType::Once,
/// Duration::from_secs_f32(1.0),
/// TransformRotationLens {
/// start: Quat::IDENTITY,
/// end: Quat::from_rotation_x(90.0_f32.to_radians()),
/// },
/// );
/// let seq = tween1.then(tween2);
/// ```
pub fn then(self, tween: impl Tweenable<T> + Send + Sync + 'static) -> Sequence<T> {
Sequence::from_single(self).then(tween)
}
}
impl<T> Tween<T> {
/// Create a new tween animation.
///
/// # Example
/// ```
/// # use bevy_tweening::{lens::*, *};
/// # use bevy::math::Vec3;
/// # use std::time::Duration;
/// let tween = Tween::new(
/// EaseFunction::QuadraticInOut,
/// TweeningType::Once,
/// Duration::from_secs_f32(1.0),
/// TransformPositionLens {
/// start: Vec3::ZERO,
/// end: Vec3::new(3.5, 0., 0.),
/// },
/// );
/// ```
pub fn new<L>(
ease_function: impl Into<EaseMethod>,
tweening_type: TweeningType,
duration: Duration,
lens: L,
) -> Self
where
L: Lens<T> + Send + Sync + 'static,
{
Tween {
ease_function: ease_function.into(),
timer: Timer::new(duration, tweening_type != TweeningType::Once),
tweening_type,
direction: TweeningDirection::Forward,
/// Enable or disable raising a completed event.
///
/// If enabled, the tween will raise a [`TweenCompleted`] event when the animation completed.
/// This is similar to the [`set_completed()`] callback, but uses Bevy events instead.
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/// # Example
/// ```
/// # use bevy_tweening::{lens::*, *};
/// # use bevy::{ecs::event::EventReader, math::Vec3};
/// # use std::time::Duration;
/// let tween = Tween::new(
/// // [...]
/// # EaseFunction::QuadraticInOut,
/// # TweeningType::Once,
/// # Duration::from_secs_f32(1.0),
/// # TransformPositionLens {
/// # start: Vec3::ZERO,
/// # end: Vec3::new(3.5, 0., 0.),
/// # },
/// )
/// .with_completed_event(true, 42);
///
/// fn my_system(mut reader: EventReader<TweenCompleted>) {
/// for ev in reader.iter() {
/// assert_eq!(ev.user_data, 42);
/// println!("Entity {:?} raised TweenCompleted!", ev.entity);
/// }
/// }
/// ```
///
/// [`set_completed()`]: Tween::set_completed
pub fn with_completed_event(mut self, enabled: bool, user_data: u64) -> Self {
self.event_data = if enabled { Some(user_data) } else { None };
/// The current animation direction.
///
/// See [`TweeningDirection`] for details.
pub fn direction(&self) -> TweeningDirection {
self.direction
}
/// Set a callback invoked when the animation completed.
///
/// The callback when invoked receives as parameters the [`Entity`] on which the target and the
/// animator are, as well as a reference to the current [`Tween`].
///
/// Only non-looping tweenables can complete.
pub fn set_completed<C>(&mut self, callback: C)
C: Fn(Entity, &Tween<T>) + Send + Sync + 'static,
self.on_completed = Some(Box::new(callback));
/// Clear the callback invoked when the animation completed.
pub fn clear_completed(&mut self) {
self.on_completed = None;
/// Enable or disable raising a completed event.
///
/// If enabled, the tween will raise a [`TweenCompleted`] event when the animation completed.
/// This is similar to the [`set_completed()`] callback, but uses Bevy events instead.
///
/// See [`with_completed_event()`] for details.
/// [`set_completed()`]: Tween::set_completed
/// [`with_completed_event()`]: Tween::with_completed_event
pub fn set_completed_event(&mut self, enabled: bool, user_data: u64) {
self.event_data = if enabled { Some(user_data) } else { None };
impl<T> Tweenable<T> for Tween<T> {
fn duration(&self) -> Duration {
self.timer.duration()
fn is_looping(&self) -> bool {
self.tweening_type != TweeningType::Once
}
fn set_progress(&mut self, progress: f32) {
// need to reset() to clear finished() unfortunately
self.timer.reset();
self.timer.set_elapsed(Duration::from_secs_f64(
self.timer.duration().as_secs_f64() * progress as f64,
));
// set_elapsed() does not update finished() etc. which we rely on
self.timer.tick(Duration::ZERO);
}
fn progress(&self) -> f32 {
match self.direction {
TweeningDirection::Forward => self.timer.percent(),
TweeningDirection::Backward => self.timer.percent_left(),
}
}
fn tick(
&mut self,
delta: Duration,
target: &mut T,
entity: Entity,
event_writer: &mut EventWriter<TweenCompleted>,
) -> TweenState {
if !self.is_looping() && self.timer.finished() {
return TweenState::Completed;
let mut state = TweenState::Active;
// Tick the timer to update the animation time
self.timer.tick(delta);
// Toggle direction immediately, so self.progress() returns the correct ratio
if self.timer.just_finished() && self.tweening_type == TweeningType::PingPong {
self.direction = !self.direction;
}
// Apply the lens, even if the animation finished, to ensure the state is consistent
let progress = self.progress();
let factor = self.ease_function.sample(progress);
self.lens.lerp(target, factor);
if self.timer.just_finished() {
if self.tweening_type == TweeningType::Once {
state = TweenState::Completed;
// Timer::times_finished() returns the number of finished times since last tick only
self.times_completed += self.timer.times_finished();
if let Some(user_data) = &self.event_data {
event_writer.send(TweenCompleted {
entity,
user_data: *user_data,
});
if let Some(cb) = &self.on_completed {
state
}
fn times_completed(&self) -> u32 {
self.times_completed
self.times_completed = 0;
}
}
/// A sequence of tweens played back in order one after the other.
pub struct Sequence<T> {
tweens: Vec<Box<dyn Tweenable<T> + Send + Sync + 'static>>,
index: usize,
duration: Duration,
time: Duration,
}
impl<T> Sequence<T> {
/// Create a new sequence of tweens.
///
/// This method panics if the input collection is empty.
pub fn new(items: impl IntoIterator<Item = impl IntoBoxDynTweenable<T>>) -> Self {
let tweens: Vec<_> = items
.into_iter()
.map(IntoBoxDynTweenable::into_box_dyn)
.collect();
assert!(!tweens.is_empty());
let duration = tweens.iter().map(|t| t.duration()).sum();
Sequence {
tweens,
index: 0,
duration,
time: Duration::from_secs(0),
}
}
/// Create a new sequence containing a single tween.
pub fn from_single(tween: impl Tweenable<T> + Send + Sync + 'static) -> Self {
let duration = tween.duration();
Sequence {
tweens: vec![Box::new(tween)],
index: 0,
duration,
time: Duration::from_secs(0),
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
}
}
/// Append a [`Tweenable`] to this sequence.
pub fn then(mut self, tween: impl Tweenable<T> + Send + Sync + 'static) -> Self {
self.duration += tween.duration();
self.tweens.push(Box::new(tween));
self
}
/// Index of the current active tween in the sequence.
pub fn index(&self) -> usize {
self.index.min(self.tweens.len() - 1)
}
/// Get the current active tween in the sequence.
pub fn current(&self) -> &dyn Tweenable<T> {
self.tweens[self.index()].as_ref()
}
}
impl<T> Tweenable<T> for Sequence<T> {
fn duration(&self) -> Duration {
self.duration
}
fn is_looping(&self) -> bool {
false // TODO - implement looping sequences...
}
fn set_progress(&mut self, progress: f32) {
self.times_completed = if progress >= 1. { 1 } else { 0 };
let progress = progress.clamp(0., 1.); // not looping
// Set the total sequence progress
let total_elapsed_secs = self.duration().as_secs_f64() * progress as f64;
self.time = Duration::from_secs_f64(total_elapsed_secs);
// Find which tween is active in the sequence
let mut accum_duration = 0.;
for index in 0..self.tweens.len() {
let tween = &mut self.tweens[index];
let tween_duration = tween.duration().as_secs_f64();
if total_elapsed_secs < accum_duration + tween_duration {
self.index = index;
let local_duration = total_elapsed_secs - accum_duration;
tween.set_progress((local_duration / tween_duration) as f32);
// TODO?? set progress of other tweens after that one to 0. ??
return;
}
tween.set_progress(1.); // ?? to prepare for next loop/rewind?
accum_duration += tween_duration;
}
// None found; sequence ended
self.index = self.tweens.len();
}
fn progress(&self) -> f32 {
self.time.as_secs_f32() / self.duration.as_secs_f32()
}
fn tick(
&mut self,
delta: Duration,
target: &mut T,
entity: Entity,
event_writer: &mut EventWriter<TweenCompleted>,
) -> TweenState {
let mut state = TweenState::Active;
self.time = (self.time + delta).min(self.duration);
let tween = &mut self.tweens[self.index];
let tween_state = tween.tick(delta, target, entity, event_writer);
if tween_state == TweenState::Completed {
tween.rewind();
self.index += 1;
if self.index >= self.tweens.len() {
state = TweenState::Completed;
self.times_completed = 1;
state
} else {
TweenState::Completed
fn times_completed(&self) -> u32 {
self.times_completed
}
fn rewind(&mut self) {
self.time = Duration::from_secs(0);
self.index = 0;
self.times_completed = 0;
for tween in &mut self.tweens {
// or only first?
tween.rewind();
}
}
}
/// A collection of [`Tweenable`] executing in parallel.
pub struct Tracks<T> {
tracks: Vec<Box<dyn Tweenable<T> + Send + Sync + 'static>>,
duration: Duration,
time: Duration,
}
impl<T> Tracks<T> {
/// Create a new [`Tracks`] from an iterator over a collection of [`Tweenable`].
pub fn new(items: impl IntoIterator<Item = impl IntoBoxDynTweenable<T>>) -> Self {
let tracks: Vec<_> = items
.into_iter()
.map(IntoBoxDynTweenable::into_box_dyn)
.collect();
let duration = tracks.iter().map(|t| t.duration()).max().unwrap();
Tracks {
tracks,
duration,
time: Duration::from_secs(0),
}
}
}
impl<T> Tweenable<T> for Tracks<T> {
fn duration(&self) -> Duration {
self.duration
}
fn is_looping(&self) -> bool {
false // TODO - implement looping tracks...
}
fn set_progress(&mut self, progress: f32) {
self.times_completed = if progress >= 1. { 1 } else { 0 }; // not looping
let progress = progress.clamp(0., 1.); // not looping
let time_secs = self.duration.as_secs_f64() * progress as f64;
self.time = Duration::from_secs_f64(time_secs);
for tweenable in &mut self.tracks {
let progress = time_secs / tweenable.duration().as_secs_f64();
tweenable.set_progress(progress as f32);
}
fn progress(&self) -> f32 {
self.time.as_secs_f32() / self.duration.as_secs_f32()
}
fn tick(
&mut self,
delta: Duration,
target: &mut T,
entity: Entity,
event_writer: &mut EventWriter<TweenCompleted>,
) -> TweenState {
self.time = (self.time + delta).min(self.duration);
let mut any_active = false;
let state = tweenable.tick(delta, target, entity, event_writer);
any_active = any_active || (state == TweenState::Active);
if any_active {
TweenState::Active
self.times_completed = 1;
fn times_completed(&self) -> u32 {
self.times_completed
}
fn rewind(&mut self) {
self.time = Duration::from_secs(0);
self.times_completed = 0;
for tween in &mut self.tracks {
tween.rewind();
/// A time delay that doesn't animate anything.
///
/// This is generally useful for combining with other tweenables into sequences and tracks,
/// for example to delay the start of a tween in a track relative to another track. The `menu`
/// example (`examples/menu.rs`) uses this technique to delay the animation of its buttons.
pub struct Delay {
timer: Timer,
}
impl Delay {
/// Create a new [`Delay`] with a given duration.
pub fn new(duration: Duration) -> Self {
Delay {
timer: Timer::new(duration, false),
}
}
/// Chain another [`Tweenable`] after this tween, making a sequence with the two.
pub fn then<T>(self, tween: impl Tweenable<T> + Send + Sync + 'static) -> Sequence<T> {
Sequence::from_single(self).then(tween)
}
}
impl<T> Tweenable<T> for Delay {
fn duration(&self) -> Duration {
self.timer.duration()
}
fn is_looping(&self) -> bool {
false
}
fn set_progress(&mut self, progress: f32) {
// need to reset() to clear finished() unfortunately
self.timer.reset();
self.timer.set_elapsed(Duration::from_secs_f64(
self.timer.duration().as_secs_f64() * progress as f64,
));
// set_elapsed() does not update finished() etc. which we rely on
self.timer.tick(Duration::ZERO);
}
fn progress(&self) -> f32 {
self.timer.percent()
}
fn tick(
&mut self,
delta: Duration,
_target: &mut T,
_entity: Entity,
_event_writer: &mut EventWriter<TweenCompleted>,
) -> TweenState {
self.timer.tick(delta);
if self.timer.finished() {
TweenState::Completed
} else {
TweenState::Active
}
}
fn times_completed(&self) -> u32 {
if self.timer.finished() {
1
self.timer.reset();
}
}
#[cfg(test)]
mod tests {
use super::*;
use bevy::ecs::{event::Events, system::SystemState};
use std::sync::{Arc, Mutex};
use std::time::Duration;
/// Utility to compare floating-point values with a tolerance.
fn abs_diff_eq(a: f32, b: f32, tol: f32) -> bool {
(a - b).abs() < tol
}
#[derive(Default, Copy, Clone)]
struct CallbackMonitor {
invoke_count: u64,
last_reported_count: u32,
}
/// Test ticking of a single tween in isolation.
#[test]
fn tween_tick() {
for tweening_type in &[
TweeningType::Once,
TweeningType::Loop,
TweeningType::PingPong,
] {
println!("TweeningType: {:?}", tweening_type);
// Create a linear tween over 1 second
let mut tween = Tween::new(
EaseMethod::Linear,
*tweening_type,
Duration::from_secs_f32(1.0),
TransformPositionLens {
start: Vec3::ZERO,
end: Vec3::ONE,
},
);
assert!(tween.on_completed.is_none());
assert!(tween.event_data.is_none());
let dummy_entity = Entity::from_raw(42);
// Register callbacks to count started/ended events
let callback_monitor = Arc::new(Mutex::new(CallbackMonitor::default()));
let cb_mon_ptr = Arc::clone(&callback_monitor);
tween.set_completed(move |entity, tween| {
assert_eq!(dummy_entity, entity);
let mut cb_mon = cb_mon_ptr.lock().unwrap();
cb_mon.invoke_count += 1;
cb_mon.last_reported_count = tween.times_completed();
assert!(tween.on_completed.is_some());
assert!(tween.event_data.is_none());
assert_eq!(callback_monitor.lock().unwrap().invoke_count, 0);
// Activate event sending
const USER_DATA: u64 = 54789; // dummy
tween.set_completed_event(true, USER_DATA);
assert!(tween.event_data.is_some());
assert_eq!(tween.event_data.unwrap(), USER_DATA);
// Dummy world and event writer
let mut world = World::new();
world.insert_resource(Events::<TweenCompleted>::default());
let mut event_writer_system_state: SystemState<EventWriter<TweenCompleted>> =
SystemState::new(&mut world);
let mut event_reader_system_state: SystemState<EventReader<TweenCompleted>> =
// Loop over 2.2 seconds, so greater than one ping-pong loop
let mut transform = Transform::default();
let tick_duration = Duration::from_secs_f32(0.2);
for i in 1..=11 {
// Calculate expected values
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
let (progress, times_completed, direction, expected_state, just_completed) =
match tweening_type {
TweeningType::Once => {
let progress = (i as f32 * 0.2).min(1.0);
let times_completed = if i >= 5 { 1 } else { 0 };
let state = if i < 5 {
TweenState::Active
} else {
TweenState::Completed
};
let just_completed = i == 5;
(
progress,
times_completed,
TweeningDirection::Forward,
state,
just_completed,
)
}
TweeningType::Loop => {
let progress = (i as f32 * 0.2).fract();
let times_completed = i / 5;
let just_completed = i % 5 == 0;
(
progress,
times_completed,
TweeningDirection::Forward,
TweenState::Active,
just_completed,
)
}
TweeningType::PingPong => {
let i10 = i % 10;
let progress = if i10 >= 5 {
(10 - i10) as f32 * 0.2
} else {
i10 as f32 * 0.2
};
let times_completed = i / 5;
let direction = if i10 >= 5 {
TweeningDirection::Backward
} else {
TweeningDirection::Forward
};
let just_completed = i % 5 == 0;
(
progress,
times_completed,
direction,
TweenState::Active,
just_completed,
)
}
};
"Expected: progress={} times_completed={} direction={:?} state={:?} just_completed={}",
progress, times_completed, direction, expected_state, just_completed
let actual_state = {
let mut event_writer = event_writer_system_state.get_mut(&mut world);
tween.tick(
tick_duration,
&mut transform,
dummy_entity,
&mut event_writer,
)
};
// Propagate events
{
let mut events = world.get_resource_mut::<Events<TweenCompleted>>().unwrap();
events.update();
}
assert_eq!(tween.direction(), direction);
assert_eq!(tween.is_looping(), *tweening_type != TweeningType::Once);
assert!(abs_diff_eq(tween.progress(), progress, 1e-5));
assert_eq!(tween.times_completed(), times_completed);
assert!(transform
.translation
.abs_diff_eq(Vec3::splat(progress), 1e-5));
assert!(transform.rotation.abs_diff_eq(Quat::IDENTITY, 1e-5));
let cb_mon = callback_monitor.lock().unwrap();
assert_eq!(cb_mon.invoke_count, times_completed as u64);
assert_eq!(cb_mon.last_reported_count, times_completed);
{
let mut event_reader = event_reader_system_state.get_mut(&mut world);
let event = event_reader.iter().next();
if just_completed {
assert!(event.is_some());
if let Some(event) = event {
assert_eq!(event.entity, dummy_entity);
assert_eq!(event.user_data, USER_DATA);
}
} else {
assert!(event.is_none());
}
}
// Rewind
tween.rewind();
assert_eq!(tween.direction(), TweeningDirection::Forward);
assert_eq!(tween.is_looping(), *tweening_type != TweeningType::Once);
assert!(abs_diff_eq(tween.progress(), 0., 1e-5));
assert_eq!(tween.times_completed(), 0);
// Dummy tick to update target
let actual_state = {
let mut event_writer = event_writer_system_state.get_mut(&mut world);
tween.tick(
Duration::ZERO,
&mut transform,
Entity::from_raw(0),
&mut event_writer,
)
};
assert_eq!(actual_state, TweenState::Active);
assert!(transform.translation.abs_diff_eq(Vec3::ZERO, 1e-5));
assert!(transform.rotation.abs_diff_eq(Quat::IDENTITY, 1e-5));
// Clear callback
tween.clear_completed();
assert!(tween.on_completed.is_none());
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
}
}
/// Test ticking a sequence of tweens.
#[test]
fn seq_tick() {
let tween1 = Tween::new(
EaseMethod::Linear,
TweeningType::Once,
Duration::from_secs_f32(1.0),
TransformPositionLens {
start: Vec3::ZERO,
end: Vec3::ONE,
},
);
let tween2 = Tween::new(
EaseMethod::Linear,
TweeningType::Once,
Duration::from_secs_f32(1.0),
TransformRotationLens {
start: Quat::IDENTITY,
end: Quat::from_rotation_x(180_f32.to_radians()),
},
);
let mut seq = tween1.then(tween2);
let mut transform = Transform::default();
// Dummy world and event writer
let mut world = World::new();
world.insert_resource(Events::<TweenCompleted>::default());
let mut system_state: SystemState<EventWriter<TweenCompleted>> =
SystemState::new(&mut world);
let mut event_writer = system_state.get_mut(&mut world);
let state = seq.tick(
Duration::from_secs_f32(0.2),
&mut transform,
Entity::from_raw(0),
assert_eq!(state, TweenState::Active);
let r = i as f32 * 0.2;
assert_eq!(transform, Transform::from_translation(Vec3::splat(r)));
assert_eq!(state, TweenState::Active);
let alpha_deg = (36 * (i - 5)) as f32;
assert!(transform.translation.abs_diff_eq(Vec3::splat(1.), 1e-5));
assert!(transform
.rotation
.abs_diff_eq(Quat::from_rotation_x(alpha_deg.to_radians()), 1e-5));
} else {
assert_eq!(state, TweenState::Completed);
assert!(transform.translation.abs_diff_eq(Vec3::splat(1.), 1e-5));
assert!(transform
.rotation
.abs_diff_eq(Quat::from_rotation_x(180_f32.to_radians()), 1e-5));
}
}
}
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
/// Sequence::new() and various Sequence-specific methods
#[test]
fn seq_iter() {
let mut seq = Sequence::new((1..5).map(|i| {
Tween::new(
EaseMethod::Linear,
TweeningType::Once,
Duration::from_secs_f32(0.2 * i as f32),
TransformPositionLens {
start: Vec3::ZERO,
end: Vec3::ONE,
},
)
}));
assert!(!seq.is_looping());
let mut progress = 0.;
for i in 1..5 {
assert_eq!(seq.index(), i - 1);
assert!((seq.progress() - progress).abs() < 1e-5);
let secs = 0.2 * i as f32;
assert_eq!(seq.current().duration(), Duration::from_secs_f32(secs));
progress += 0.25;
seq.set_progress(progress);
assert_eq!(seq.times_completed(), if i == 4 { 1 } else { 0 });
}
seq.rewind();
assert_eq!(seq.progress(), 0.);
assert_eq!(seq.times_completed(), 0);
}
/// Test ticking parallel tracks of tweens.
#[test]
fn tracks_tick() {
let tween1 = Tween::new(
EaseMethod::Linear,
TweeningType::Once,
Duration::from_secs_f32(1.),
TransformPositionLens {
start: Vec3::ZERO,
end: Vec3::ONE,
},
);
let tween2 = Tween::new(
EaseMethod::Linear,